Nuprl Lemma : geo-cong-angle-symmetry
∀e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  (xyz ≅a abc ⇒ {zyx ≅a abc ∧ xyz ≅a cba ∧ zyx ≅a cba ∧ abc ≅a xyz ∧ cba ≅a xyz ∧ abc ≅a zyx ∧ cba ≅a zyx})
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
basic-geometry: BasicGeometry, 
geo-point: Point, 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (xyz  \mcong{}\msuba{}  abc
    {}\mRightarrow{}  \{zyx  \mcong{}\msuba{}  abc  \mwedge{}  xyz  \mcong{}\msuba{}  cba  \mwedge{}  zyx  \mcong{}\msuba{}  cba  \mwedge{}  abc  \mcong{}\msuba{}  xyz  \mwedge{}  cba  \mcong{}\msuba{}  xyz  \mwedge{}  abc  \mcong{}\msuba{}  zyx  \mwedge{}  cba  \mcong{}\msuba{}  zyx\})
Date html generated:
2020_05_20-AM-09_56_58
Last ObjectModification:
2020_01_14-AM-10_29_29
Theory : euclidean!plane!geometry
Home
Index