Nuprl Lemma : geo-cong-angle_inversion
∀e:BasicGeometry. ∀a,b,c:Point.  ((a # b ∧ c # b) ⇒ abc ≅a cba)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
basic-geometry: BasicGeometry, 
geo-sep: a # b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
geo-cong-angle: abc ≅a xyz, 
basic-geometry: BasicGeometry, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
squash: ↓T, 
true: True, 
exists: ∃x:A. B[x]
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    ((a  \#  b  \mwedge{}  c  \#  b)  {}\mRightarrow{}  abc  \mcong{}\msuba{}  cba)
Date html generated:
2020_05_20-AM-09_57_06
Last ObjectModification:
2020_01_27-PM-10_01_12
Theory : euclidean!plane!geometry
Home
Index