Nuprl Lemma : geo-conga-to-cong3
∀E:BasicGeometry. ∀a,b,c,d,e,f:Point.
  (a ≠ b
  ⇒ c ≠ b
  ⇒ d ≠ e
  ⇒ f ≠ e
  ⇒ abc ≅a def
  ⇒ (∃a',c',d',f':Point. (out(b a'a) ∧ out(b cc') ∧ out(e d'd) ∧ out(e ff') ∧ Cong3(a'bc',d'ef'))))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-cong-angle: abc ≅a xyz, 
basic-geometry: BasicGeometry, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
cand: A c∧ B, 
geo-out: out(p ab), 
basic-geometry: BasicGeometry, 
not: ¬A, 
false: False, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
geo-cong-tri: Cong3(abc,a'b'c'), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
guard: {T}
Lemmas referenced : 
geo-between-sep, 
geo-sep-sym, 
geo-between_wf, 
istype-void, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-out_wf, 
geo-cong-tri_wf, 
geo-cong-angle_wf, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation_alt, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
independent_pairFormation, 
voidElimination, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
inhabitedIsType, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate
Latex:
\mforall{}E:BasicGeometry.  \mforall{}a,b,c,d,e,f:Point.
    (a  \mneq{}  b
    {}\mRightarrow{}  c  \mneq{}  b
    {}\mRightarrow{}  d  \mneq{}  e
    {}\mRightarrow{}  f  \mneq{}  e
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  def
    {}\mRightarrow{}  (\mexists{}a',c',d',f':Point.  (out(b  a'a)  \mwedge{}  out(b  cc')  \mwedge{}  out(e  d'd)  \mwedge{}  out(e  ff')  \mwedge{}  Cong3(a'bc',d'ef'))))
Date html generated:
2019_10_16-PM-01_28_29
Last ObjectModification:
2018_11_07-PM-00_57_51
Theory : euclidean!plane!geometry
Home
Index