Nuprl Lemma : geo-congruent-preserves-between
∀e:BasicGeometry. ∀[a,b,c,a',b',c':Point].  (B(a'b'c')) supposing (bc ≅ b'c' and ac ≅ a'c' and ab ≅ a'b' and B(abc))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-congruent: ab ≅ cd, 
geo-between: B(abc), 
geo-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
geo-between: B(abc), 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
or: P ∨ Q, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q)
Latex:
\mforall{}e:BasicGeometry
    \mforall{}[a,b,c,a',b',c':Point].    (B(a'b'c'))  supposing  (bc  \mcong{}  b'c'  and  ac  \mcong{}  a'c'  and  ab  \mcong{}  a'b'  and  B(abc))
Date html generated:
2020_05_20-AM-09_52_24
Last ObjectModification:
2019_12_20-PM-08_45_10
Theory : euclidean!plane!geometry
Home
Index