Nuprl Lemma : geo-extend-construction
∀e:EuclideanPlane. ∀q:Point. ∀a:{a:Point| q ≠ a} . ∀b,c:Point.  (∃x:{Point| (q_a_x ∧ ax ≅ bc)})
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-congruent: ab ≅ cd, 
geo-between: a_b_c, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
sq_exists: ∃x:{A| B[x]}, 
and: P ∧ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
sq_exists: ∃x:{A| B[x]}, 
member: t ∈ T, 
all: ∀x:A. B[x], 
cand: A c∧ B, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
squash: ↓T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
euclidean-plane: EuclideanPlane
Lemmas referenced : 
geo-sep_wf, 
set_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
Euclid-Prop2-ext, 
geo-congruent_wf, 
geo-between_wf, 
sq_stable__geo-sep, 
extend-using-SC, 
geo-congruent-transitivity
Rules used in proof : 
lambdaEquality, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
hypothesis, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
productEquality, 
independent_pairFormation, 
dependent_set_memberFormation, 
productElimination, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}q:Point.  \mforall{}a:\{a:Point|  q  \mneq{}  a\}  .  \mforall{}b,c:Point.    (\mexists{}x:\{Point|  (q\_a\_x  \mwedge{}  ax  \00D0  bc)\})
Date html generated:
2017_10_02-PM-04_49_54
Last ObjectModification:
2017_08_06-PM-02_53_26
Theory : euclidean!plane!geometry
Home
Index