Nuprl Lemma : geo-gt-sep
∀e:EuclideanPlane. ∀A,B,C,P:Point.  (AB > CP ⇒ A ≠ B)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-gt: cd > ab, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-gt: cd > ab, 
squash: ↓T, 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ
Lemmas referenced : 
sq_stable__geo-sep, 
geo-between-sep, 
geo-between-symmetry, 
euclidean-plane-axioms, 
geo-gt_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
productElimination, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType, 
because_Cache
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,P:Point.    (AB  >  CP  {}\mRightarrow{}  A  \mneq{}  B)
Date html generated:
2019_10_16-PM-01_14_08
Last ObjectModification:
2019_08_07-PM-02_51_43
Theory : euclidean!plane!geometry
Home
Index