Nuprl Lemma : geo-intersect-unique
∀eu:EuclideanParPlane. ∀l,m:Line. ∀x,y:Point.  (l \/ m ⇒ (x I l ∧ x I m) ⇒ (y I l ∧ y I m) ⇒ x ≡ y)
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane, 
geo-intersect: L \/ M, 
geo-incident: p I L, 
geo-line: Line, 
geo-eq: a ≡ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
euclidean-parallel-plane: EuclideanParPlane, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
and: P ∧ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
geo-line-sep: (l # m), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
uiff: uiff(P;Q), 
geo-plsep: p # l, 
geo-lsep: a # bc, 
or: P ∨ Q, 
pi2: snd(t), 
pi1: fst(t), 
top: Top, 
geo-line: Line, 
euclidean-plane: EuclideanPlane, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
true: True, 
squash: ↓T, 
less_than: a < b, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
rev_implies: P ⇐ Q, 
not: ¬A
Lemmas referenced : 
geo-line_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
euclidean-parallel-plane_wf, 
subtype_rel_transitivity, 
euclidean-planes-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
geo-intersect_wf, 
geoline-subtype1, 
geo-incident_wf, 
geo-intersect-lines-iff, 
geo-incident-line, 
geo-plsep_wf, 
basic-geometry_wf, 
euclidean-plane-subtype-basic, 
geo-intersection-unicity, 
geo-sep_wf, 
pi1_wf_top, 
geo-sep-or, 
geo-sep-sym, 
geo-colinear_wf, 
lelt_wf, 
false_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
geo-colinear-is-colinear-set, 
not-lsep-iff-colinear, 
geo-line-pt-sep, 
euclidean-plane-axioms, 
geo-colinear-transitivity
Rules used in proof : 
dependent_functionElimination, 
independent_isectElimination, 
instantiate, 
because_Cache, 
sqequalRule, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_pairFormation_alt, 
independent_pairFormation, 
productIsType, 
universeIsType, 
unionElimination, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_pairEquality, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality
Latex:
\mforall{}eu:EuclideanParPlane.  \mforall{}l,m:Line.  \mforall{}x,y:Point.
    (l  \mbackslash{}/  m  {}\mRightarrow{}  (x  I  l  \mwedge{}  x  I  m)  {}\mRightarrow{}  (y  I  l  \mwedge{}  y  I  m)  {}\mRightarrow{}  x  \mequiv{}  y)
Date html generated:
2019_10_16-PM-02_42_35
Last ObjectModification:
2019_08_30-AM-07_09_19
Theory : euclidean!plane!geometry
Home
Index