Nuprl Lemma : geo-le-iff-between-points
∀g:EuclideanPlane. ∀p,q:{p:Point| O_X_p} .  (p ≤ q ⇐⇒ X_p_q)
Proof
Definitions occuring in Statement : 
geo-le: p ≤ q, 
geo-X: X, 
geo-O: O, 
euclidean-plane: EuclideanPlane, 
geo-between: a_b_c, 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
basic-geometry: BasicGeometry, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
guard: {T}, 
uimplies: b supposing a, 
euclidean-plane: EuclideanPlane, 
geo-le: p ≤ q, 
squash: ↓T, 
sq_stable: SqStable(P), 
exists: ∃x:A. B[x], 
geo-eq: a ≡ b, 
not: ¬A, 
geo-length-type: Length, 
quotient: x,y:A//B[x; y], 
false: False, 
cand: A c∧ B
Lemmas referenced : 
geo-le_wf, 
subtype-geo-length-type, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-X_wf, 
geo-point_wf, 
geo-O_wf, 
sq_stable__geo-between, 
member_wf, 
geo-eq_wf, 
geo-sep_wf, 
geo-between_functionality, 
geo-eq_weakening, 
geo-length-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
inhabitedIsType, 
setIsType, 
because_Cache, 
imageElimination, 
independent_functionElimination, 
productElimination, 
imageMemberEquality, 
baseClosed, 
pertypeElimination, 
productEquality, 
setEquality, 
dependent_pairFormation_alt, 
productIsType, 
equalityIsType1
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:\{p:Point|  O\_X\_p\}  .    (p  \mleq{}  q  \mLeftarrow{}{}\mRightarrow{}  X\_p\_q)
Date html generated:
2019_10_16-PM-01_34_02
Last ObjectModification:
2018_10_03-AM-11_16_57
Theory : euclidean!plane!geometry
Home
Index