Nuprl Lemma : geo-le-sep
∀e:BasicGeometry. ∀A,B,C,P:Point.  (|AB| ≤ |CP| ⇒ A ≠ B ⇒ C ≠ P)
Proof
Definitions occuring in Statement : 
geo-le: p ≤ q, 
geo-length: |s|, 
geo-mk-seg: ab, 
basic-geometry: BasicGeometry, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
basic-geometry: BasicGeometry, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
geo-mk-seg_wf, 
geo-length_wf, 
geo-le_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-sep_wf, 
geo-le-iff, 
geo-ge-sep
Rules used in proof : 
because_Cache, 
rename, 
setElimination, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
independent_functionElimination, 
productElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,P:Point.    (|AB|  \mleq{}  |CP|  {}\mRightarrow{}  A  \mneq{}  B  {}\mRightarrow{}  C  \mneq{}  P)
Date html generated:
2017_10_02-PM-06_18_19
Last ObjectModification:
2017_08_05-PM-04_13_05
Theory : euclidean!plane!geometry
Home
Index