Nuprl Lemma : geo-left-interiority
∀g:OrientedPlane. ∀a,b,c,p:Point.  (p leftof ab ⇒ p leftof bc ⇒ p leftof ca ⇒ (¬a leftof cb))
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
euclidean-plane: EuclideanPlane, 
oriented-plane: OrientedPlane, 
member: t ∈ T, 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
cand: A c∧ B, 
geo-lsep: a # bc, 
rev_implies: P ⇐ Q
Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c,p:Point.    (p  leftof  ab  {}\mRightarrow{}  p  leftof  bc  {}\mRightarrow{}  p  leftof  ca  {}\mRightarrow{}  (\mneg{}a  leftof  cb))
Date html generated:
2020_05_20-AM-10_02_03
Last ObjectModification:
2019_12_26-PM-08_58_27
Theory : euclidean!plane!geometry
Home
Index