Nuprl Lemma : geo-length_functionality
∀e:BasicGeometry. ∀[a,b,c,d:Point].  (|ab| = |cd| ∈ Length) supposing (b ≡ d and a ≡ c)
Proof
Definitions occuring in Statement : 
geo-length: |s|, 
geo-length-type: Length, 
geo-mk-seg: ab, 
basic-geometry: BasicGeometry, 
geo-eq: a ≡ b, 
geo-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
basic-geometry: BasicGeometry, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c,d:Point].    (|ab|  =  |cd|)  supposing  (b  \mequiv{}  d  and  a  \mequiv{}  c)
Date html generated:
2020_05_20-AM-09_52_02
Last ObjectModification:
2020_01_13-PM-03_24_49
Theory : euclidean!plane!geometry
Home
Index