Nuprl Lemma : geo-lt-angle_functionality
∀e:EuclideanPlane. ∀a,a',b,b',c,c',x,x',y,y',z,z':Point.
  (a ≡ a' ⇒ b ≡ b' ⇒ c ≡ c' ⇒ x ≡ x' ⇒ y ≡ y' ⇒ z ≡ z' ⇒ (abc < xyz ⇐⇒ a'b'c' < x'y'z'))
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz, 
euclidean-plane: EuclideanPlane, 
geo-eq: a ≡ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
geo-lt-angle: abc < xyz, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
not: ¬A, 
false: False, 
basic-geometry: BasicGeometry, 
cand: A c∧ B
Lemmas referenced : 
geo-lt-angle_wf, 
geo-eq_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-out_wf, 
geo-between_wf, 
geo-cong-angle_functionality, 
geo-eq_weakening, 
geo-between_functionality, 
geo-out_functionality, 
geo-cong-angle_wf, 
istype-void, 
geo-sep_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
independent_functionElimination, 
voidElimination, 
dependent_pairFormation_alt, 
productIsType, 
functionIsType, 
promote_hyp
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,a',b,b',c,c',x,x',y,y',z,z':Point.
    (a  \mequiv{}  a'  {}\mRightarrow{}  b  \mequiv{}  b'  {}\mRightarrow{}  c  \mequiv{}  c'  {}\mRightarrow{}  x  \mequiv{}  x'  {}\mRightarrow{}  y  \mequiv{}  y'  {}\mRightarrow{}  z  \mequiv{}  z'  {}\mRightarrow{}  (abc  <  xyz  \mLeftarrow{}{}\mRightarrow{}  a'b'c'  <  x'y'z'))
Date html generated:
2019_10_16-PM-02_01_53
Last ObjectModification:
2019_09_27-PM-07_29_03
Theory : euclidean!plane!geometry
Home
Index