Nuprl Lemma : geo-not-colinear
∀e:BasicGeometry. ∀[a,b,c:Point].  (¬Colinear(a;b;c) ⇐⇒ ¬(B(abc) ∨ B(bca) ∨ B(cab)))
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-colinear: Colinear(a;b;c), 
geo-between: B(abc), 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
or: P ∨ Q
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
guard: {T}, 
or: P ∨ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
geo-colinear: Colinear(a;b;c), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
basic-geometry: BasicGeometry, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
decidable: Dec(P), 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
cand: A c∧ B, 
basic-geometry-: BasicGeometry-, 
euclidean-plane: EuclideanPlane
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[a,b,c:Point].    (\mneg{}Colinear(a;b;c)  \mLeftarrow{}{}\mRightarrow{}  \mneg{}(B(abc)  \mvee{}  B(bca)  \mvee{}  B(cab)))
Date html generated:
2020_05_20-AM-09_49_03
Last ObjectModification:
2019_12_20-PM-07_38_01
Theory : euclidean!plane!geometry
Home
Index