Nuprl Lemma : geo-out-if-between
∀e:BasicGeometry. ∀p,a,b,c:Point.  (a-p-c ⇒ b-p-c ⇒ out(p ab))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
basic-geometry: BasicGeometry, 
geo-strict-between: a-b-c, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-out: out(p ab), 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
euclidean-plane: EuclideanPlane, 
basic-geometry-: BasicGeometry-, 
prop: ℙ
Lemmas referenced : 
geo-sep-sym, 
geo-strict-between-sep2, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-between-same-side2, 
geo-strict-between-implies-between, 
subtype_rel_self, 
geo-between-symmetry, 
geo-strict-between-sep3, 
geo-strict-between_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
independent_functionElimination, 
applyEquality, 
hypothesis, 
instantiate, 
isectElimination, 
independent_isectElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
inhabitedIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,a,b,c:Point.    (a-p-c  {}\mRightarrow{}  b-p-c  {}\mRightarrow{}  out(p  ab))
Date html generated:
2019_10_16-PM-01_23_34
Last ObjectModification:
2019_07_26-PM-01_55_19
Theory : euclidean!plane!geometry
Home
Index