Nuprl Lemma : geo-out-preserves-lt-angle
∀e:EuclideanPlane. ∀a,b,c,a',c',x,y,z:Point.  (a # bc ⇒ out(b aa') ⇒ out(b cc') ⇒ abc < xyz ⇒ a'bc' < xyz)
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz, 
geo-out: out(p ab), 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
basic-geometry: BasicGeometry, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
and: P ∧ Q
Lemmas referenced : 
geo-lt-angle_wf, 
geo-out_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-cong-angle-refl, 
lsep-implies-sep, 
geo-out_weakening, 
geo-eq_weakening, 
geo-sep-sym, 
geo-cong-angle-symm2, 
out-preserves-angle-cong_1, 
geo-cong-angle-preserves-lt-angle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
sqequalRule, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
because_Cache, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,a',c',x,y,z:Point.
    (a  \#  bc  {}\mRightarrow{}  out(b  aa')  {}\mRightarrow{}  out(b  cc')  {}\mRightarrow{}  abc  <  xyz  {}\mRightarrow{}  a'bc'  <  xyz)
Date html generated:
2019_10_16-PM-02_00_09
Last ObjectModification:
2019_01_04-PM-01_37_02
Theory : euclidean!plane!geometry
Home
Index