Nuprl Lemma : geo-out-triangle
∀e:HeytingGeometry. ∀a,b,c,a',c':Point.  (b # ac ⇒ (out(b aa') ∧ out(b cc')) ⇒ b # a'c')
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-out: out(p ab), 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
uimplies: b supposing a, 
guard: {T}, 
heyting-geometry: Error :heyting-geometry, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
and: P ∧ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
true: True, 
squash: ↓T, 
less_than: a < b, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
geo-out: out(p ab), 
cand: A c∧ B
Lemmas referenced : 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
Error :heyting-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-point_wf, 
Error :geo-triangle_wf, 
heyting-geometry-subtype, 
geo-out_wf, 
geo-out-iff-colinear, 
lelt_wf, 
false_wf, 
length_of_nil_lemma, 
length_of_cons_lemma, 
geo-out-colinear, 
geo-colinear-is-colinear-set, 
geo-sep-sym, 
geo-triangle-symmetry, 
geo-triangle-colinear
Rules used in proof : 
independent_isectElimination, 
instantiate, 
rename, 
setElimination, 
because_Cache, 
sqequalRule, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
productEquality, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_functionElimination, 
dependent_functionElimination, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,a',c':Point.    (b  \#  ac  {}\mRightarrow{}  (out(b  aa')  \mwedge{}  out(b  cc'))  {}\mRightarrow{}  b  \#  a'c')
Date html generated:
2017_10_02-PM-07_03_45
Last ObjectModification:
2017_08_08-PM-00_36_29
Theory : euclidean!plane!geometry
Home
Index