Nuprl Lemma : geo-parallel-iff-not-intersect
∀e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel-points(e;a;b;c;d) ⇐⇒ (a # b ∧ c # d) ∧ (¬ab \/ cd))
Proof
Definitions occuring in Statement : 
geo-parallel-points: geo-parallel-points(e;a;b;c;d), 
geo-intersect-points: ab \/ cd, 
euclidean-plane: EuclideanPlane, 
geo-sep: a # b, 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
geo-parallel-points: geo-parallel-points(e;a;b;c;d), 
cand: A c∧ B, 
geo-intersect-points: ab \/ cd, 
exists: ∃x:A. B[x]
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.
    (geo-parallel-points(e;a;b;c;d)  \mLeftarrow{}{}\mRightarrow{}  (a  \#  b  \mwedge{}  c  \#  d)  \mwedge{}  (\mneg{}ab  \mbackslash{}/  cd))
Date html generated:
2020_05_20-AM-10_04_57
Last ObjectModification:
2020_01_13-PM-10_21_19
Theory : euclidean!plane!geometry
Home
Index