Nuprl Lemma : geo-parallel-lsep-opp
∀e:EuclideanPlane. ∀a,b,c,d:Point.  (geo-parallel(e;a;b;c;d) ⇒ c # ab)
Proof
Definitions occuring in Statement : 
geo-parallel: geo-parallel(e;a;b;c;d), 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-parallel: geo-parallel(e;a;b;c;d), 
and: P ∧ Q, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
true: True, 
uall: ∀[x:A]. B[x], 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a
Lemmas referenced : 
lsep-iff-all-sep, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
geo-sep-sym, 
lsep-implies-sep, 
geo-colinear_wf, 
geo-parallel_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (geo-parallel(e;a;b;c;d)  {}\mRightarrow{}  c  \#  ab)
Date html generated:
2018_05_22-PM-00_13_57
Last ObjectModification:
2017_10_12-AM-11_14_18
Theory : euclidean!plane!geometry
Home
Index