Nuprl Lemma : geo-triangle_functionality
∀e:HeytingGeometry. ∀a1,a2,b1,b2,c1,c2:Point.  (a1 ≡ a2 ⇒ b1 ≡ b2 ⇒ c1 ≡ c2 ⇒ (a1 # b1c1 ⇐⇒ a2 # b2c2))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-eq: a ≡ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
and: P ∧ Q, 
heyting-geometry: HeytingGeometry, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
prop: ℙ
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a1,a2,b1,b2,c1,c2:Point.
    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  (a1  \#  b1c1  \mLeftarrow{}{}\mRightarrow{}  a2  \#  b2c2))
Date html generated:
2020_05_20-AM-10_32_53
Last ObjectModification:
2020_01_13-PM-04_13_53
Theory : euclidean!plane!geometry
Home
Index