Nuprl Lemma : geo-zero-angle-congruence-out
∀g:EuclideanPlane. ∀a,b,c,x,y:Point.  (abc ≅a xyx ⇒ out(b ac))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
or: P ∨ Q, 
cand: A c∧ B, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
guard: {T}
Lemmas referenced : 
geo-congruent-preserves-out, 
geo-congruent-iff-length, 
geo-between-implies-out2, 
geo-between-out-implies-out2, 
geo-sep-sym, 
geo-between_wf, 
geo-sep_wf, 
geo-cong-angle_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
sqequalRule, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
independent_isectElimination, 
hypothesis, 
equalitySymmetry, 
inlFormation_alt, 
independent_pairFormation, 
productIsType, 
universeIsType, 
applyEquality, 
inhabitedIsType, 
instantiate
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.    (abc  \mcong{}\msuba{}  xyx  {}\mRightarrow{}  out(b  ac))
Date html generated:
2019_10_16-PM-01_27_59
Last ObjectModification:
2018_11_08-AM-11_51_00
Theory : euclidean!plane!geometry
Home
Index