Nuprl Lemma : geo-zero-point-sep-iff-sep
∀e:BasicGeometry. ∀a,b:Point.  (X ≠ |ab| ⇐⇒ a ≠ b)
Proof
Definitions occuring in Statement : 
geo-length: |s|, 
geo-mk-seg: ab, 
basic-geometry: BasicGeometry, 
geo-X: X, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
squash: ↓T, 
true: True, 
uiff: uiff(P;Q), 
false: False
Lemmas referenced : 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-X_wf, 
geo-length_wf1, 
geo-mk-seg_wf, 
geo-point_wf, 
geo-sep-iff-or-lt, 
geo-between-trivial, 
geo-O_wf, 
geo-between_wf, 
geo-lt_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
geo-length-equality, 
geo-length_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-lt-sep, 
geo-lt-null-segment, 
geo-zero-lt-iff, 
geo-length-property, 
trivial-zero-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
productElimination, 
independent_functionElimination, 
unionElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
voidElimination
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b:Point.    (X  \mneq{}  |ab|  \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b)
Date html generated:
2019_10_16-PM-01_38_07
Last ObjectModification:
2019_02_18-PM-07_47_10
Theory : euclidean!plane!geometry
Home
Index