Nuprl Lemma : hp-angle-sum-functionality
∀e:EuclideanPlane. ∀a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
  (a ≡ a'
  ⇒ b ≡ b'
  ⇒ c ≡ c'
  ⇒ x ≡ x'
  ⇒ y ≡ y'
  ⇒ z ≡ z'
  ⇒ i ≡ i'
  ⇒ j ≡ j'
  ⇒ k ≡ k'
  ⇒ (abc + xyz ≅ ijk ⇐⇒ a'b'c' + x'y'z' ≅ i'j'k'))
Proof
Definitions occuring in Statement : 
hp-angle-sum: abc + xyz ≅ def, 
euclidean-plane: EuclideanPlane, 
geo-eq: a ≡ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
hp-angle-sum: abc + xyz ≅ def, 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
basic-geometry: BasicGeometry, 
cand: A c∧ B
Lemmas referenced : 
hp-angle-sum_wf, 
geo-eq_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-out_wf, 
geo-strict-between_wf, 
geo-between_wf, 
geo-cong-angle_wf, 
geo-cong-angle_functionality, 
geo-eq_weakening, 
geo-out_functionality, 
geo-between_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
dependent_pairFormation_alt, 
productIsType, 
independent_functionElimination, 
promote_hyp
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z,i,j,k,a',b',c',x',y',z',i',j',k':Point.
    (a  \mequiv{}  a'
    {}\mRightarrow{}  b  \mequiv{}  b'
    {}\mRightarrow{}  c  \mequiv{}  c'
    {}\mRightarrow{}  x  \mequiv{}  x'
    {}\mRightarrow{}  y  \mequiv{}  y'
    {}\mRightarrow{}  z  \mequiv{}  z'
    {}\mRightarrow{}  i  \mequiv{}  i'
    {}\mRightarrow{}  j  \mequiv{}  j'
    {}\mRightarrow{}  k  \mequiv{}  k'
    {}\mRightarrow{}  (abc  +  xyz  \mcong{}  ijk  \mLeftarrow{}{}\mRightarrow{}  a'b'c'  +  x'y'z'  \mcong{}  i'j'k'))
Date html generated:
2019_10_16-PM-02_03_38
Last ObjectModification:
2019_06_05-AM-09_37_00
Theory : euclidean!plane!geometry
Home
Index