Nuprl Lemma : hp-angles-not-lt-and-cong
∀e:EuclideanPlane. ∀a,b,c,d:Point.  ((abc ≅ρ dbc ∧ half-plane-lt-angle(e;d;a;b;c)) ⇒ False)
Proof
Definitions occuring in Statement : 
half-plane-lt-angle: half-plane-lt-angle(e;d;a;b;c), 
half-plane-cong-angle: abc ≅ρ dbc, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
false: False
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
false: False, 
and: P ∧ Q, 
half-plane-lt-angle: half-plane-lt-angle(e;d;a;b;c), 
half-plane-cong-angle: abc ≅ρ dbc, 
member: t ∈ T, 
not: ¬A, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
prop: ℙ, 
less_than: a < b, 
squash: ↓T, 
true: True, 
uall: ∀[x:A]. B[x], 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
left-not-colinear, 
geo-colinear-is-colinear-set, 
length_of_cons_lemma, 
length_of_nil_lemma, 
false_wf, 
lelt_wf, 
half-plane-cong-angle_wf, 
half-plane-lt-angle_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
isectElimination, 
productEquality, 
applyEquality, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    ((abc  \00D0\mrho{}  dbc  \mwedge{}  half-plane-lt-angle(e;d;a;b;c))  {}\mRightarrow{}  False)
Date html generated:
2017_10_02-PM-04_49_07
Last ObjectModification:
2017_08_24-PM-03_48_16
Theory : euclidean!plane!geometry
Home
Index