Nuprl Lemma : hull-cmp_wf
∀[g:OrientedPlane]. ∀[xs:{xs:Point List| geo-general-position(g;xs)} ]. ∀[i,j:ℕ||xs||].
  (hull-cmp(g;xs;i;j) ∈ comparison({k:ℕ||xs||| (¬(k = i ∈ ℤ)) ∧ (¬(k = j ∈ ℤ))} )) supposing (ij ∈ Hull(xs) and (¬(i = j\000C ∈ ℤ)))
Proof
Definitions occuring in Statement : 
hull-cmp: hull-cmp(g;xs;i;j), 
in-hull: ij ∈ Hull(xs), 
geo-general-position: geo-general-position(g;xs), 
oriented-plane: OrientedPlane, 
geo-point: Point, 
comparison: comparison(T), 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
and: P ∧ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
comparison: comparison(T), 
hull-cmp: hull-cmp(g;xs;i;j), 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
so_lambda: λ2x.t[x], 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
so_apply: x[s], 
prop: ℙ, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
nequal: a ≠ b ∈ T , 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
true: True, 
trans: Trans(T;x,y.E[x; y]), 
sq_stable: SqStable(P), 
less_than': less_than'(a;b)
Latex:
\mforall{}[g:OrientedPlane].  \mforall{}[xs:\{xs:Point  List|  geo-general-position(g;xs)\}  ].  \mforall{}[i,j:\mBbbN{}||xs||].
    (hull-cmp(g;xs;i;j)  \mmember{}  comparison(\{k:\mBbbN{}||xs|||  (\mneg{}(k  =  i))  \mwedge{}  (\mneg{}(k  =  j))\}  ))  supposing  (ij  \mmember{}  Hull(xs)  \000Cand  (\mneg{}(i  =  j)))
Date html generated:
2020_05_20-AM-10_02_35
Last ObjectModification:
2019_12_30-PM-01_14_32
Theory : euclidean!plane!geometry
Home
Index