Nuprl Lemma : interior-angles-unique2
∀e:EuclideanPlane. ∀a,b,c,d,b',c',p:Point.
  (c leftof ab
  ⇒ d leftof ab
  ⇒ p leftof ab
  ⇒ out(a bb')
  ⇒ out(a cc')
  ⇒ b'_p_c'
  ⇒ p ≠ c'
  ⇒ bad < bac
  ⇒ bap ≅a bad
  ⇒ out(a dp))
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz, 
geo-out: out(p ab), 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-left: a leftof bc, 
geo-between: a_b_c, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
member: t ∈ T, 
guard: {T}, 
exists: ∃x:A. B[x], 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
basic-geometry-: BasicGeometry-, 
iff: P ⇐⇒ Q, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
geo-tri: Triangle(a;b;c), 
rev_implies: P ⇐ Q
Lemmas referenced : 
left-implies-sep, 
geo-proper-extend-exists, 
geo-O_wf, 
geo-X_wf, 
geo-sep-O-X, 
geo-cong-angle_wf, 
geo-lt-angle_wf, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-between_wf, 
geo-out_wf, 
geo-left_wf, 
geo-point_wf, 
geo-sep-sym, 
geo-strict-between-sep3, 
geo-left-out-2, 
geo-out-iff-between1, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
Euclid-Prop7, 
geo-congruent-iff-length, 
geo-cong-angle-refl, 
geo-out_weakening, 
geo-eq_weakening, 
euclidean-plane-axioms, 
geo-cong-angle-symm2, 
geo-congruent-refl, 
out-preserves-angle-cong_1, 
geo-cong-angle-transitivity, 
geo-sas, 
geo-out_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
because_Cache, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
equalitySymmetry, 
independent_pairFormation
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d,b',c',p:Point.
    (c  leftof  ab
    {}\mRightarrow{}  d  leftof  ab
    {}\mRightarrow{}  p  leftof  ab
    {}\mRightarrow{}  out(a  bb')
    {}\mRightarrow{}  out(a  cc')
    {}\mRightarrow{}  b'\_p\_c'
    {}\mRightarrow{}  p  \mneq{}  c'
    {}\mRightarrow{}  bad  <  bac
    {}\mRightarrow{}  bap  \mcong{}\msuba{}  bad
    {}\mRightarrow{}  out(a  dp))
Date html generated:
2019_10_16-PM-02_17_15
Last ObjectModification:
2019_03_14-PM-09_56_04
Theory : euclidean!plane!geometry
Home
Index