Nuprl Lemma : isosc-bisectors-between_1
∀e:HeytingGeometry. ∀a,b,c,m,a',b',m':Point.
  (c # ab ⇒ ac ≅ bc ⇒ (c-a'-a ∧ c-b'-b) ⇒ a=m=b ⇒ a'=m'=b' ⇒ aa' ≅ bb' ⇒ c-m'-m)
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-midpoint: a=m=b, 
geo-strict-between: a-b-c, 
geo-congruent: ab ≅ cd, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
guard: {T}, 
cand: A c∧ B, 
heyting-geometry: HeytingGeometry, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-midpoint: a=m=b, 
geo-strict-between: a-b-c, 
uiff: uiff(P;Q), 
euclidean-plane: EuclideanPlane, 
basic-geometry-: BasicGeometry-, 
iff: P ⇐⇒ Q, 
geo-triangle: a # bc, 
rev_implies: P ⇐ Q, 
geo-colinear: Colinear(a;b;c)
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,m,a',b',m':Point.
    (c  \#  ab  {}\mRightarrow{}  ac  \mcong{}  bc  {}\mRightarrow{}  (c-a'-a  \mwedge{}  c-b'-b)  {}\mRightarrow{}  a=m=b  {}\mRightarrow{}  a'=m'=b'  {}\mRightarrow{}  aa'  \mcong{}  bb'  {}\mRightarrow{}  c-m'-m)
Date html generated:
2020_05_20-AM-10_33_33
Last ObjectModification:
2019_12_03-AM-09_50_54
Theory : euclidean!plane!geometry
Home
Index