Nuprl Lemma : lsep-cong-angle-implies-sep
∀g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (a # bc ⇒ abc ≅a xyz ⇒ x ≠ z)
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-sep: a ≠ b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
geo-cong-tri: Cong3(abc,a'b'c'), 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
guard: {T}, 
cand: A c∧ B, 
prop: ℙ, 
subtype_rel: A ⊆r B
Lemmas referenced : 
cong-angle-out-exists-cong3, 
geo-congruent-sep, 
geo-congruent-iff-length, 
geo-length-flip, 
out-preserves-lsep, 
lsep-symmetry, 
lsep-all-sym, 
geo-out_inversion, 
euclidean-plane-axioms, 
geo-sep-sym, 
lsep-implies-sep, 
geo-cong-angle_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
because_Cache, 
sqequalRule, 
isectElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
applyEquality, 
instantiate, 
inhabitedIsType
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (a  \#  bc  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz  {}\mRightarrow{}  x  \mneq{}  z)
Date html generated:
2019_10_16-PM-01_50_37
Last ObjectModification:
2018_11_19-PM-03_50_03
Theory : euclidean!plane!geometry
Home
Index