Nuprl Lemma : not-dist-lemma
∀g:EuclideanPlane. ∀a,b,c,d:Point.  ((¬D(a;b;b;b;c;d)) ⇒ (¬ab > cd))
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f), 
euclidean-plane: EuclideanPlane, 
geo-gt: cd > ab, 
geo-point: Point, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
geo-gt: cd > ab, 
dist: D(a;b;c;d;e;f), 
squash: ↓T, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
cand: A c∧ B, 
basic-geometry: BasicGeometry, 
uiff: uiff(P;Q), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
geo-gt_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
not_wf, 
dist_wf, 
geo-point_wf, 
geo-sep-sym, 
geo-sep_wf, 
geo-between-trivial, 
geo-congruent-refl, 
geo-congruent-flip, 
geo-congruent-iff-length, 
geo-between_wf, 
geo-congruent_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
imageElimination, 
independent_functionElimination, 
productElimination, 
voidElimination, 
hypothesis, 
because_Cache, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_pairFormation, 
dependent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalitySymmetry, 
productEquality, 
setElimination, 
rename, 
setEquality, 
lambdaEquality
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    ((\mneg{}D(a;b;b;b;c;d))  {}\mRightarrow{}  (\mneg{}ab  >  cd))
Date html generated:
2019_10_16-PM-02_48_09
Last ObjectModification:
2018_09_15-PM-03_16_12
Theory : euclidean!plane!geometry
Home
Index