Nuprl Lemma : not-lsep-if-colinear
∀g:EuclideanPlane. ∀a,b,c:Point.  (a # bc ⇒ Colinear(a;b;c) ⇒ False)
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-colinear: Colinear(a;b;c), 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
false: False
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
false: False, 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
not: ¬A
Lemmas referenced : 
not-lsep-iff-colinear, 
geo-colinear_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-lsep_wf, 
geo-point_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
independent_functionElimination
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  Colinear(a;b;c)  {}\mRightarrow{}  False)
Date html generated:
2019_10_16-PM-01_14_13
Last ObjectModification:
2019_08_08-PM-02_46_49
Theory : euclidean!plane!geometry
Home
Index