Nuprl Lemma : not-lt-and-symm-le
∀[e:BasicGeometry]. ∀[p,q:Length].  (p ≤ q ⇒ q < p ⇒ False)
Proof
Definitions occuring in Statement : 
geo-lt: p < q, 
geo-le: p ≤ q, 
geo-length-type: Length, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
false: False
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
uimplies: b supposing a, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-lt_wf, 
geo-le_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
geo-lt-irrefl, 
geo-lt_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
hypothesis, 
universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
because_Cache, 
functionIsTypeImplies, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
voidElimination, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[p,q:Length].    (p  \mleq{}  q  {}\mRightarrow{}  q  <  p  {}\mRightarrow{}  False)
 Date html generated: 
2019_10_16-PM-01_19_38
 Last ObjectModification: 
2018_12_04-PM-03_29_34
Theory : euclidean!plane!geometry
Home
Index