Nuprl Lemma : opposite-side-congruent-diagonals-midpoint
∀e:BasicGeometry. ∀A,B,C,D,P:Point.
  ((¬Colinear(A;B;C)) ⇒ B # D ⇒ AB ≅ CD ⇒ BC ≅ DA ⇒ Colinear(A;P;C) ⇒ Colinear(B;P;D) ⇒ {A=P=C ∧ B=P=D})
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
geo-colinear: Colinear(a;b;c), 
geo-congruent: ab ≅ cd, 
geo-sep: a # b, 
geo-point: Point, 
guard: {T}, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
not: ¬A, 
false: False, 
stable: Stable{P}, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-five-seg-compressed: FSC(a;b;c;d  a';b';c';d'), 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q, 
geo-eq: a ≡ b, 
rev_implies: P ⇐ Q
Latex:
\mforall{}e:BasicGeometry.  \mforall{}A,B,C,D,P:Point.
    ((\mneg{}Colinear(A;B;C))
    {}\mRightarrow{}  B  \#  D
    {}\mRightarrow{}  AB  \mcong{}  CD
    {}\mRightarrow{}  BC  \mcong{}  DA
    {}\mRightarrow{}  Colinear(A;P;C)
    {}\mRightarrow{}  Colinear(B;P;D)
    {}\mRightarrow{}  \{A=P=C  \mwedge{}  B=P=D\})
Date html generated:
2020_05_20-AM-09_57_41
Last ObjectModification:
2020_01_27-PM-10_00_52
Theory : euclidean!plane!geometry
Home
Index