Nuprl Lemma : p4-triangles
∀e:HeytingGeometry. ∀a,b,c,x,y,z:Point.
  (a # bc ⇒ x # yz ⇒ ab ≅ xy ⇒ ac ≅ xz ⇒ bac ≅a yxz ⇒ ((bc ≅ yz ∧ Cong3(abc,xyz)) ∧ abc ≅a xyz ∧ bca ≅a yzx))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-cong-angle: abc ≅a xyz, 
geo-congruent: ab ≅ cd, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
geo-cong-angle: abc ≅a xyz, 
exists: ∃x:A. B[x], 
heyting-geometry: HeytingGeometry, 
uiff: uiff(P;Q), 
geo-cong-tri: Cong3(abc,a'b'c')
Lemmas referenced : 
geo-cong-angle_wf, 
euclidean-plane-subtype-basic, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
basic-geometry_wf, 
geo-congruent_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-triangle_wf, 
geo-point_wf, 
geo-inner-five-segment, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-inner-three-segment, 
geo-between-symmetry, 
geo-triangle-property, 
geo-between-trivial, 
geo-between_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
independent_pairFormation, 
hypothesis, 
sqequalHypSubstitution, 
productElimination, 
thin, 
universeIsType, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
inhabitedIsType, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_pairFormation_alt, 
productIsType
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,y,z:Point.
    (a  \#  bc
    {}\mRightarrow{}  x  \#  yz
    {}\mRightarrow{}  ab  \mcong{}  xy
    {}\mRightarrow{}  ac  \mcong{}  xz
    {}\mRightarrow{}  bac  \mcong{}\msuba{}  yxz
    {}\mRightarrow{}  ((bc  \mcong{}  yz  \mwedge{}  Cong3(abc,xyz))  \mwedge{}  abc  \mcong{}\msuba{}  xyz  \mwedge{}  bca  \mcong{}\msuba{}  yzx))
Date html generated:
2019_10_16-PM-02_09_49
Last ObjectModification:
2018_11_08-AM-11_30_05
Theory : euclidean!plane!geometry
Home
Index