Nuprl Lemma : p5geo
∀e:BasicGeometry. ∀a,b,c:Point.  ((ab ≅ ac ∧ Triangle(a;b;c)) ⇒ (∃j,k:Point. (jbc ≅a kcb ∧ B(abj) ∧ B(ack))))
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
geo-tri: Triangle(a;b;c), 
basic-geometry: BasicGeometry, 
geo-congruent: ab ≅ cd, 
geo-between: B(abc), 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
geo-tri: Triangle(a;b;c), 
basic-geometry: BasicGeometry, 
exists: ∃x:A. B[x], 
geo-cong-angle: abc ≅a xyz, 
cand: A c∧ B, 
uiff: uiff(P;Q), 
true: True, 
squash: ↓T
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.
    ((ab  \mcong{}  ac  \mwedge{}  Triangle(a;b;c))  {}\mRightarrow{}  (\mexists{}j,k:Point.  (jbc  \mcong{}\msuba{}  kcb  \mwedge{}  B(abj)  \mwedge{}  B(ack))))
Date html generated:
2020_05_20-AM-09_59_01
Last ObjectModification:
2020_01_27-PM-10_00_32
Theory : euclidean!plane!geometry
Home
Index