Nuprl Lemma : p8geo
∀e:BasicGeometry. ∀a,b,c,x,y,z:Point.
  ((Triangle(a;b;c) ∧ Triangle(x;y;z)) ⇒ Cong3(abc,xyz) ⇒ (abc ≅a xyz ∧ bac ≅a yxz ∧ bca ≅a yzx))
Proof
Definitions occuring in Statement : 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-cong-angle: abc ≅a xyz, 
geo-tri: Triangle(a;b;c), 
basic-geometry: BasicGeometry, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
cand: A c∧ B, 
geo-cong-tri: Cong3(abc,a'b'c'), 
geo-tri: Triangle(a;b;c), 
geo-cong-angle: abc ≅a xyz, 
member: t ∈ T, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
uiff: uiff(P;Q)
Lemmas referenced : 
geo-sep-sym, 
geo-cong-tri_wf, 
geo-tri_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-between-trivial, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-between_wf, 
geo-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
independent_pairFormation, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
because_Cache, 
universeIsType, 
isectElimination, 
sqequalRule, 
productIsType, 
inhabitedIsType, 
applyEquality, 
instantiate, 
independent_isectElimination, 
dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,x,y,z:Point.
    ((Triangle(a;b;c)  \mwedge{}  Triangle(x;y;z))  {}\mRightarrow{}  Cong3(abc,xyz)  {}\mRightarrow{}  (abc  \mcong{}\msuba{}  xyz  \mwedge{}  bac  \mcong{}\msuba{}  yxz  \mwedge{}  bca  \mcong{}\msuba{}  yzx))
Date html generated:
2019_10_16-PM-01_29_47
Last ObjectModification:
2018_11_08-AM-11_29_47
Theory : euclidean!plane!geometry
Home
Index