Nuprl Lemma : parallelogram-construction2
∀e:EuclideanPlane. ∀a,b,c,x,y:Point.
  (a # bc
  ⇒ a-x-b
  ⇒ a-y-c
  ⇒ (∃t:Point
       (geo-parallel-points(e;b;x;y;t)
       ∧ bx ≅ yt
       ∧ xt ≅ by
       ∧ xby ≅a xty
       ∧ (¬¬((a leftof bc ⇒ (t leftof ac ∧ t leftof bc)) ∧ (a leftof cb ⇒ (t leftof ca ∧ t leftof cb)))))))
Proof
Definitions occuring in Statement : 
geo-parallel-points: geo-parallel-points(e;a;b;c;d), 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-strict-between: a-b-c, 
geo-congruent: ab ≅ cd, 
geo-lsep: a # bc, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
and: P ∧ Q, 
sq_exists: ∃x:A [B[x]], 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
squash: ↓T, 
basic-geometry: BasicGeometry, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
geo-midpoint: a=m=b, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
basic-geometry-: BasicGeometry-, 
uiff: uiff(P;Q), 
geo-tri: Triangle(a;b;c), 
geo-cong-angle: abc ≅a xyz, 
geo-strict-between: a-b-c, 
geo-lsep: a # bc, 
oriented-plane: OrientedPlane, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
geo-out: out(p ab), 
geo-parallel-points: geo-parallel-points(e;a;b;c;d), 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda3, 
append: as @ bs, 
ge: i ≥ j , 
true: True, 
less_than: a < b, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
l_member: (x ∈ l)
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y:Point.
    (a  \#  bc
    {}\mRightarrow{}  a-x-b
    {}\mRightarrow{}  a-y-c
    {}\mRightarrow{}  (\mexists{}t:Point
              (geo-parallel-points(e;b;x;y;t)
              \mwedge{}  bx  \mcong{}  yt
              \mwedge{}  xt  \mcong{}  by
              \mwedge{}  xby  \mcong{}\msuba{}  xty
              \mwedge{}  (\mneg{}\mneg{}((a  leftof  bc  {}\mRightarrow{}  (t  leftof  ac  \mwedge{}  t  leftof  bc))
                  \mwedge{}  (a  leftof  cb  {}\mRightarrow{}  (t  leftof  ca  \mwedge{}  t  leftof  cb)))))))
 Date html generated: 
2020_05_20-AM-10_44_19
 Last ObjectModification: 
2020_01_27-PM-09_56_20
Theory : euclidean!plane!geometry
Home
Index