Nuprl Lemma : pgeo-lsep-implies-plsep_dual
∀g:ProjectivePlane. ∀p:Line. ∀l,m:Point. ∀s:l ≠ m.  (l I p ⇒ p ≠ l ∨ m ⇒ m ≠ p)
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane, 
pgeo-join: p ∨ q, 
pgeo-lsep: l ≠ m, 
pgeo-psep: a ≠ b, 
pgeo-incident: a I b, 
pgeo-plsep: a ≠ b, 
pgeo-line: Line, 
pgeo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
dual-plane: dual-plane(pg), 
pgeo-plsep: a ≠ b, 
pgeo-meet: l ∧ m, 
pgeo-psep: a ≠ b, 
pgeo-incident: a I b, 
pgeo-lsep: l ≠ m, 
pgeo-line: Line, 
pgeo-point: Point, 
complete-pgeo-dual: complete-pgeo-dual(pg;l), 
pgeo-dual: pg*, 
mk-complete-pgeo: mk-complete-pgeo(pg;p), 
top: Top, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
pgeo-dual-prim: pg*, 
mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3), 
btrue: tt, 
mk-pgeo-prim: mk-pgeo-prim, 
pgeo-join: p ∨ q
Lemmas referenced : 
pgeo-lsep-implies-plsep, 
dual-plane_wf, 
rec_select_update_lemma, 
projective-plane_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p:Line.  \mforall{}l,m:Point.  \mforall{}s:l  \mneq{}  m.    (l  I  p  {}\mRightarrow{}  p  \mneq{}  l  \mvee{}  m  {}\mRightarrow{}  m  \mneq{}  p)
Date html generated:
2018_05_22-PM-00_48_22
Last ObjectModification:
2017_12_05-AM-08_36_10
Theory : euclidean!plane!geometry
Home
Index