Nuprl Lemma : pgeo-order-implies2
∀pg:ProjectivePlane. ∀n:ℕ.  (order(pg) = n ⇒ (∃l:Line. p,q:{p:Point| p I l} //p ≡ q ~ ℕn + 1))
Proof
Definitions occuring in Statement : 
pgeo-order: order(pg) = n, 
projective-plane: ProjectivePlane, 
pgeo-peq: a ≡ b, 
pgeo-incident: a I b, 
pgeo-line: Line, 
pgeo-point: Point, 
equipollent: A ~ B, 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
nat: ℕ, 
so_apply: x[s1;s2], 
so_lambda: λ2x y.t[x; y], 
prop: ℙ, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
member: t ∈ T, 
pgeo-order: order(pg) = n, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
nat_wf, 
pgeo-order_wf, 
int_seg_wf, 
pgeo-order-equiv_rel, 
pgeo-peq_wf, 
pgeo-incident_wf, 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-point_wf, 
quotient_wf, 
equipollent_wf, 
pgeo-non-trivial-dual
Rules used in proof : 
addEquality, 
natural_numberEquality, 
lambdaEquality, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
setEquality, 
isectElimination, 
because_Cache, 
hypothesis, 
dependent_pairFormation, 
rename, 
setElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}n:\mBbbN{}.    (order(pg)  =  n  {}\mRightarrow{}  (\mexists{}l:Line.  p,q:\{p:Point|  p  I  l\}  //p  \mequiv{}  q  \msim{}  \mBbbN{}n  +  1))
Date html generated:
2018_05_22-PM-00_59_00
Last ObjectModification:
2018_01_10-AM-10_36_29
Theory : euclidean!plane!geometry
Home
Index