Nuprl Lemma : pgeo-order_2-incidence
∀pg:ProjectivePlane. ∀l:Line.  (order(pg) = 2 ⇒ p,q:{p:Point| p I l} //p ≡ q ~ ℕ3)
Proof
Definitions occuring in Statement : 
pgeo-order: order(pg) = n, 
projective-plane: ProjectivePlane, 
pgeo-peq: a ≡ b, 
pgeo-incident: a I b, 
pgeo-line: Line, 
pgeo-point: Point, 
equipollent: A ~ B, 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
natural_number: $n
Definitions unfolded in proof : 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
prop: ℙ, 
member: t ∈ T, 
pgeo-order: order(pg) = n, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-primitives_wf, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
projective-plane-structure_subtype, 
pgeo-line_wf, 
le_wf, 
false_wf, 
pgeo-order_wf
Rules used in proof : 
independent_isectElimination, 
instantiate, 
applyEquality, 
isectElimination, 
independent_pairFormation, 
natural_numberEquality, 
dependent_set_memberEquality, 
extract_by_obid, 
introduction, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
hypothesis, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}pg:ProjectivePlane.  \mforall{}l:Line.    (order(pg)  =  2  {}\mRightarrow{}  p,q:\{p:Point|  p  I  l\}  //p  \mequiv{}  q  \msim{}  \mBbbN{}3)
Date html generated:
2018_05_22-PM-00_58_27
Last ObjectModification:
2018_01_10-AM-10_26_51
Theory : euclidean!plane!geometry
Home
Index