Nuprl Lemma : pgeo-plsep-to-psep2
∀g:ProjectivePlane. ∀a:Point. ∀l:Line.  (a ≠ l ⇒ (∀b:{b:Point| b I l} . a ≠ b))
Proof
Definitions occuring in Statement : 
projective-plane: ProjectivePlane, 
pgeo-psep: a ≠ b, 
pgeo-incident: a I b, 
pgeo-plsep: a ≠ b, 
pgeo-line: Line, 
pgeo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
prop: ℙ, 
squash: ↓T, 
sq_stable: SqStable(P), 
uimplies: b supposing a, 
guard: {T}, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
pgeo-line_wf, 
pgeo-plsep_wf, 
pgeo-incident_wf, 
pgeo-primitives_wf, 
projective-plane-structure_subtype, 
pgeo-point_wf, 
set_wf, 
pgeo-psep-sym, 
sq_stable__pgeo-incident, 
projective-plane-structure_wf, 
projective-plane-structure-complete_wf, 
projective-plane_wf, 
subtype_rel_transitivity, 
projective-plane-subtype, 
projective-plane-structure-complete_subtype, 
pgeo-plsep-to-psep
Rules used in proof : 
lambdaEquality, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
independent_functionElimination, 
rename, 
setElimination, 
sqequalRule, 
independent_isectElimination, 
isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:ProjectivePlane.  \mforall{}a:Point.  \mforall{}l:Line.    (a  \mneq{}  l  {}\mRightarrow{}  (\mforall{}b:\{b:Point|  b  I  l\}  .  a  \mneq{}  b))
Date html generated:
2018_05_22-PM-00_48_32
Last ObjectModification:
2018_01_05-PM-08_32_31
Theory : euclidean!plane!geometry
Home
Index