Nuprl Lemma : plane-sep-imp-Opasch_left
∀e:EuclideanPlane. ∀a,b:Point. ∀c:{c:Point| B(abc)} . ∀x:Point. ∀y:{y:Point| b-x-y} .
  (x leftof ab ⇒ (∃p:Point [(B(axp) ∧ B(cpy))]))
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane, 
geo-strict-between: a-b-c, 
geo-between: B(abc), 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
implies: P ⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
euclidean-plane: EuclideanPlane, 
uall: ∀[x:A]. B[x], 
sq_stable: SqStable(P), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
or: P ∨ Q, 
and: P ∧ Q, 
oriented-plane: OrientedPlane, 
basic-geometry-: BasicGeometry-, 
exists: ∃x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
cand: A c∧ B, 
not: ¬A, 
false: False, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
basic-geometry: BasicGeometry, 
geo-lsep: a # bc, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-strict-between: a-b-c, 
geo-colinear: Colinear(a;b;c), 
rev_implies: P ⇐ Q
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  B(abc)\}  .  \mforall{}x:Point.  \mforall{}y:\{y:Point|  b-x-y\}  .
    (x  leftof  ab  {}\mRightarrow{}  (\mexists{}p:Point  [(B(axp)  \mwedge{}  B(cpy))]))
Date html generated:
2020_05_20-AM-10_01_17
Last ObjectModification:
2019_12_03-AM-09_53_01
Theory : euclidean!plane!geometry
Home
Index