Nuprl Lemma : proj-point-sep_defB
∀e:EuclideanParPlane. ∀p,q:Point + Line.
  (((∃n:Line?. ((¬pp-sep(e;p;n)) ∧ pp-sep(e;q;n))) ∧ (∀l,m:Line.  (l \/ m ⇒ (∀n:Line. (l \/ n ∨ m \/ n)))))
  ⇒ proj-point-sep(e;p;q))
Proof
Definitions occuring in Statement : 
proj-point-sep: proj-point-sep(eu;p;q), 
pp-sep: pp-sep(eu;p;l), 
euclidean-parallel-plane: EuclideanParPlane, 
geo-intersect: L \/ M, 
geo-line: Line, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
unit: Unit, 
union: left + right
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
exists: ∃x:A. B[x], 
pp-sep: pp-sep(eu;p;l), 
proj-point-sep: proj-point-sep(eu;p;q), 
true: True, 
member: t ∈ T, 
not: ¬A, 
false: False, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
euclidean-parallel-plane: EuclideanParPlane, 
or: P ∨ Q, 
geo-line: Line, 
geo-plsep: p # l, 
pi1: fst(t), 
pi2: snd(t), 
iff: P ⇐⇒ Q
Lemmas referenced : 
exists_wf, 
geo-line_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
unit_wf2, 
not_wf, 
pp-sep_wf, 
all_wf, 
geo-intersect_wf, 
geoline-subtype1, 
or_wf, 
geo-point_wf, 
lsep-iff-all-sep, 
not-lsep-iff-colinear, 
geo-sep-sym, 
geo-intersect-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
natural_numberEquality, 
independent_functionElimination, 
voidElimination, 
productEquality, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
unionEquality, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
lambdaEquality, 
because_Cache, 
functionEquality, 
setElimination, 
rename
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}p,q:Point  +  Line.
    (((\mexists{}n:Line?.  ((\mneg{}pp-sep(e;p;n))  \mwedge{}  pp-sep(e;q;n)))
    \mwedge{}  (\mforall{}l,m:Line.    (l  \mbackslash{}/  m  {}\mRightarrow{}  (\mforall{}n:Line.  (l  \mbackslash{}/  n  \mvee{}  m  \mbackslash{}/  n)))))
    {}\mRightarrow{}  proj-point-sep(e;p;q))
Date html generated:
2018_05_22-PM-01_16_21
Last ObjectModification:
2018_05_19-PM-11_16_40
Theory : euclidean!plane!geometry
Home
Index