Nuprl Lemma : proj-point-sep_wf
∀[e:EuclideanParPlane]. ∀[p,q:Point + Line].  (proj-point-sep(e;p;q) ∈ ℙ)
Proof
Definitions occuring in Statement : 
proj-point-sep: proj-point-sep(eu;p;q), 
euclidean-parallel-plane: EuclideanParPlane, 
geo-line: Line, 
geo-point: Point, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
union: left + right
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
proj-point-sep: proj-point-sep(eu;p;q), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
euclidean-parallel-plane: EuclideanParPlane, 
guard: {T}, 
uimplies: b supposing a
Lemmas referenced : 
geo-sep_wf, 
true_wf, 
equal_wf, 
geo-intersect_wf, 
geoline-subtype1, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
thin, 
because_Cache, 
lambdaFormation, 
unionElimination, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
dependent_functionElimination, 
independent_functionElimination, 
setElimination, 
rename, 
axiomEquality, 
unionEquality, 
instantiate, 
independent_isectElimination, 
isect_memberEquality
Latex:
\mforall{}[e:EuclideanParPlane].  \mforall{}[p,q:Point  +  Line].    (proj-point-sep(e;p;q)  \mmember{}  \mBbbP{})
Date html generated:
2019_10_16-PM-02_42_53
Last ObjectModification:
2018_08_21-PM-02_00_32
Theory : euclidean!plane!geometry
Home
Index