Nuprl Lemma : right-angle_functionality
∀e:BasicGeometry. ∀a,b,c,a',b',c':Point.  (a ≡ a' ⇒ b ≡ b' ⇒ c ≡ c' ⇒ {Rabc ⇐⇒ Ra'b'c'})
Proof
Definitions occuring in Statement : 
right-angle: Rabc, 
basic-geometry: BasicGeometry, 
geo-eq: a ≡ b, 
geo-point: Point, 
guard: {T}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
rev_implies: P ⇐ Q, 
right-angle: Rabc, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
so_apply: x[s], 
so_lambda: λ2x.t[x]
Lemmas referenced : 
geo-point_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-eq_wf, 
right-angle_wf, 
geo-congruent_functionality, 
geo-eq_weakening, 
geo-eq_inversion, 
geo-midpoint_functionality, 
implies_functionality_wrt_implies, 
all_functionality_wrt_implies, 
geo-congruent_wf, 
geo-midpoint_wf
Rules used in proof : 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
functionEquality, 
lambdaEquality
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,a',b',c':Point.    (a  \mequiv{}  a'  {}\mRightarrow{}  b  \mequiv{}  b'  {}\mRightarrow{}  c  \mequiv{}  c'  {}\mRightarrow{}  \{Rabc  \mLeftarrow{}{}\mRightarrow{}  Ra'b'c'\})
Date html generated:
2017_10_02-PM-06_40_29
Last ObjectModification:
2017_08_05-PM-04_47_04
Theory : euclidean!plane!geometry
Home
Index