Nuprl Lemma : symmetric-point-construction1
∀e:BasicGeometry. ∀a:Point. ∀p:{p:Point| a # p} .  (∃p':Point [p=a=p'])
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
geo-sep: a # b, 
geo-point: Point, 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
euclidean-plane: EuclideanPlane, 
sq_stable: SqStable(P), 
squash: ↓T, 
sq_exists: ∃x:A [B[x]], 
and: P ∧ Q, 
geo-midpoint: a=m=b
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a:Point.  \mforall{}p:\{p:Point|  a  \#  p\}  .    (\mexists{}p':Point  [p=a=p'])
Date html generated:
2020_05_20-AM-09_49_46
Last ObjectModification:
2020_01_27-PM-10_03_36
Theory : euclidean!plane!geometry
Home
Index