Nuprl Lemma : tarski-erect-perp-same-side
∀e:HeytingGeometry. ∀a,b,c:Point.
  (c # ba ⇒ (∃p,t,d:Point. (((ab ⊥ pa ∧ Colinear(a;b;t)) ∧ p-t-d) ∧ geo-tar-same-side(e;c;d;a;b))))
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc, 
heyting-geometry: HeytingGeometry, 
geo-perp: ab ⊥ cd, 
geo-tar-same-side: geo-tar-same-side(e;a;b;p;q), 
geo-colinear: Colinear(a;b;c), 
geo-strict-between: a-b-c, 
geo-point: Point, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
guard: {T}, 
and: P ∧ Q, 
cand: A c∧ B, 
exists: ∃x:A. B[x], 
heyting-geometry: HeytingGeometry, 
euclidean-plane: EuclideanPlane, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
or: P ∨ Q, 
uimplies: b supposing a, 
geo-midpoint: a=m=b, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
geo-strict-between: a-b-c, 
geo-perp: ab ⊥ cd, 
l_member: (x ∈ l), 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T, 
true: True, 
ge: i ≥ j , 
append: as @ bs, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3], 
geo-tar-same-side: geo-tar-same-side(e;a;b;p;q), 
geo-tar-opp-side: geo-tar-opp-side(e;a;b;p;q), 
geo-triangle: a # bc, 
basic-geometry-: BasicGeometry-, 
geo-perp-in: ab  ⊥x cd, 
uiff: uiff(P;Q), 
iff: P ⇐⇒ Q
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c:Point.
    (c  \#  ba  {}\mRightarrow{}  (\mexists{}p,t,d:Point.  (((ab  \mbot{}  pa  \mwedge{}  Colinear(a;b;t))  \mwedge{}  p-t-d)  \mwedge{}  geo-tar-same-side(e;c;d;a;b))))
Date html generated:
2020_05_20-AM-10_34_28
Last ObjectModification:
2020_01_13-PM-04_34_22
Theory : euclidean!plane!geometry
Home
Index