Step
*
2
1
1
of Lemma
unique-angles-in-half-plane-better2
.....antecedent..... 
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. q : Point
6. a leftof bc
7. q leftof bc
8. qcb ≅a acb
9. u : Point
10. a-c-u
11. cu ≅ OX
12. q1 : Point
13. u-c-q1
14. cq1 ≅ cq
15. cb ≅ cb
16. cq ≅ cq1
17. bcq ≅a acb
⊢ acb ≅a bcq1
BY
{ (InstLemma  `out-preserves-angle-cong_1` [⌜e⌝;⌜a⌝;⌜c⌝;⌜b⌝;⌜a⌝;⌜c⌝;⌜b⌝;⌜q1⌝;⌜b⌝;⌜a⌝;⌜b⌝]⋅ THEN EAuto 1) }
1
.....antecedent..... 
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. q : Point
6. a leftof bc
7. q leftof bc
8. qcb ≅a acb
9. u : Point
10. a-c-u
11. cu ≅ OX
12. q1 : Point
13. u-c-q1
14. cq1 ≅ cq
15. cb ≅ cb
16. cq ≅ cq1
17. bcq ≅a acb
⊢ out(c aq1)
2
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. q : Point
6. a leftof bc
7. q leftof bc
8. qcb ≅a acb
9. u : Point
10. a-c-u
11. cu ≅ OX
12. q1 : Point
13. u-c-q1
14. cq1 ≅ cq
15. cb ≅ cb
16. cq ≅ cq1
17. bcq ≅a acb
18. q1cb ≅a acb
⊢ acb ≅a bcq1
Latex:
Latex:
.....antecedent..... 
1.  e  :  EuclideanPlane
2.  a  :  Point
3.  b  :  Point
4.  c  :  Point
5.  q  :  Point
6.  a  leftof  bc
7.  q  leftof  bc
8.  qcb  \mcong{}\msuba{}  acb
9.  u  :  Point
10.  a-c-u
11.  cu  \mcong{}  OX
12.  q1  :  Point
13.  u-c-q1
14.  cq1  \mcong{}  cq
15.  cb  \mcong{}  cb
16.  cq  \mcong{}  cq1
17.  bcq  \mcong{}\msuba{}  acb
\mvdash{}  acb  \mcong{}\msuba{}  bcq1
By
Latex:
(InstLemma    `out-preserves-angle-cong\_1`  [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}c\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}q1\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{};\mkleeneopen{}a\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{}
  THEN  EAuto  1
  )
Home
Index