Nuprl Lemma : zero-angles-congruent2
∀g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (out(b ac) ⇒ out(y xz) ⇒ abc ≅a xyz)
Proof
Definitions occuring in Statement : 
geo-out: out(p ab), 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
member: t ∈ T, 
geo-out: out(p ab), 
basic-geometry: BasicGeometry, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
basic-geometry-: BasicGeometry-, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
squash: ↓T, 
prop: ℙ, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}
Lemmas referenced : 
geo-sep-sym, 
geo-proper-extend-exists, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
geo-congruent-iff-length, 
geo-add-length-between, 
geo-length-flip, 
geo-add-length_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
geo-add-length-comm, 
geo-between_wf, 
geo-congruent_wf, 
geo-out_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-between-out, 
geo-strict-between-sep1, 
geo-out_transitivity, 
geo-out_inversion, 
geo-out-cong-cong
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
hypothesis, 
because_Cache, 
sqequalRule, 
rename, 
dependent_pairFormation_alt, 
isectElimination, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productIsType, 
instantiate
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (out(b  ac)  {}\mRightarrow{}  out(y  xz)  {}\mRightarrow{}  abc  \mcong{}\msuba{}  xyz)
Date html generated:
2019_10_16-PM-01_48_48
Last ObjectModification:
2019_09_05-PM-02_46_34
Theory : euclidean!plane!geometry
Home
Index