Nuprl Lemma : free-append-0
∀[X:Type]. ∀[w:free-word(X)].  (w + 0 = w ∈ free-word(X))
Proof
Definitions occuring in Statement : 
free-0: 0, 
free-append: w + w', 
free-word: free-word(X), 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
free-word: free-word(X), 
all: ∀x:A. B[x], 
prop: ℙ, 
implies: P ⇒ Q, 
cand: A c∧ B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
uimplies: b supposing a, 
free-0: 0, 
free-append: w + w', 
quotient: x,y:A//B[x; y], 
and: P ∧ Q, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
guard: {T}, 
equiv_rel: EquivRel(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y])
Lemmas referenced : 
list_wf, 
word-equiv_wf, 
word-equiv-equiv, 
quotient-member-eq, 
append_wf, 
nil_wf, 
append_back_nil, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
free-word_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
extract_by_obid, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
promote_hyp, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
productEquality, 
applyEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[X:Type].  \mforall{}[w:free-word(X)].    (w  +  0  =  w)
Date html generated:
2017_10_05-AM-00_44_47
Last ObjectModification:
2017_07_28-AM-09_18_41
Theory : free!groups
Home
Index