Nuprl Lemma : ip-strict-between_wf

[rv:InnerProductSpace]. ∀[a,b,c:Point].  (a-b-c ∈ ℙ)


Proof




Definitions occuring in Statement :  ip-strict-between: a-b-c inner-product-space: InnerProductSpace ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T ip-strict-between: a-b-c prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  ip-between_wf ss-sep_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c:Point].    (a-b-c  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_03_31
Last ObjectModification: 2017_03_12-PM-02_12_25

Theory : inner!product!spaces


Home Index