Nuprl Lemma : ip-triangle-implies-separated2

rv:InnerProductSpace. ∀a,b,c:Point.  (a;b;c)  b)


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  ip-triangle-permute ip-triangle-implies-separated ip-triangle_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-sep-symmetry
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis because_Cache isectElimination applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  a  \#  b)



Date html generated: 2017_10_04-PM-11_58_46
Last ObjectModification: 2017_03_10-PM-02_11_59

Theory : inner!product!spaces


Home Index