Nuprl Lemma : ip-triangle-implies-separated2
∀rv:InnerProductSpace. ∀a,b,c:Point.  (Δ(a;b;c) 
⇒ a # b)
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
ip-triangle-permute, 
ip-triangle-implies-separated, 
ip-triangle_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-sep-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
because_Cache, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  a  \#  b)
Date html generated:
2017_10_04-PM-11_58_46
Last ObjectModification:
2017_03_10-PM-02_11_59
Theory : inner!product!spaces
Home
Index